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ABSTRACT

An optimization methodology is given for
finding the heater settings that provide spatially-
uniform transient heating in manufacturing
processes involving radiant heating. Equations
governing the transient temperature distribution
and temperature sensitivity distribution over the
product are derived using an infinitesimal-area
technique, and solved numerically to calculate the
objective  function and gradient vector.
Minimization is done using a quasi-Newton
algorithm that incorporates an active set method
to enforce design constraints. This methodology
is demonstrated by finding the optimal transient
heater settings of a two-dimensional annealing
furnace.

INTRODUCTION

Radiant enclosures are found in diverse
industrial settings. They are often used to
uniformly heat a product according to a desired
temperature history. Examples include annealing
furnaces used in foundries, baking ovens used in
food preparation, infrared heating systems that
cure painted surfaces, and rapid thermal
processing (RTP) chambers used to manufacture
semiconductor wafers. In each case, the
enclosure consists of a heater surface, several
intermediate surfaces, and a design surface that
contains the product to be processed. To design
these systems, it is important to have an accurate
model of the transient heater settings to size the
heaters and other components of the enclosure.
Having an accurate a priori estimate of the heater
settings enables the use of high-gain controllers
that quickly adjust the heaters to compensate for
deviations from the desired temperature
distribution over the design surface.

In the past, transient heater settings have been
solved using a forward “trial-and-error”
technique, in which the designer guesses the

appropriate heater settings and then repeatedly
evaluates and heuristically adjusts these settings
until a satisfactory solution to the design problem
is identified. Because of the complicated nature
of the coupled heat transfer modes, an intuitive
understanding of the system physics is elusive, so
such design methodologies usually require many
iterations, and the final solution is of limited
quality.To overcome this difficulty, designers
have adapted model-based control algorithms to
design the transient heater settings. At any instant,
the difference between the temperature measured
at different locations on the design surface and the
desired set-point temperature defines an error
signal. This error signal is passed through a
feedback loop to the controller, which adjusts the
heater settings such to reduce the error signal.
Model-based controllers were applied to design
the heaters in RTP furnaces [1,2], and a furnace
used in a continuous annealing process [3].
Despite the nonlinear nature of the problem, most
model-based controllers use linear feedback
algorithms that cannot accommodate the integrals
in the radiosity equation that represent reflection
and reradiation, so these effects are usually
ignored; this induces large modeling errors into
the controller, severely limiting theirn accuracy.
Gwak and Masada [4] accounted for these effects
by applying non-linear control laws coupled with
embedded Tikhonov and TSVD regularization..
More recently, inverse design methodologies
have been developed to solve this type of design
problem. In this approach, both the desired
temperature and the radiation heat input required
to satisfy the sensible energy increase are
specified over the design surface at different
process times. The nonlinear system of equations
is linearized and the resulting set of ill-
conditioned linear equations is solved using
regularization methods, starting from the first
step. Each solution is used to define the right-
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hand-side vector of the next time step.
Multimiode radiant enclosure problems were
solved by using TSVD regularization [5], and
conjugate gradient regularization was used to find
the transient heater settings that heated a design
surface in a roll-through batch furnace according
to a prescribed temperature history [6].

Unlike most model-based control algorithms,
the inverse design approach can accommodate a
sophisticated heat transfer model resulting in
small modeling error. Nevertheless, a significant
drawback of this method is that it is difficult to
accommodate design constraints in the inverse
design methodology, and because of this,
solutions from regularization often include
regions of negative heat flux over the heater
surface. This condition cannot be realized in
practical furnaces, so these regions are usually
taken to be adiabatic, further impairing the
solution quality.

Optimization through nonlinear programming
overcomes many of these drawbacks. Here, an
objective function, F(®), is defined in such a way
that its minimum corresponds to the desired
design outcome, which in this case is a
temperature distribution over the design surface
that both matches the desired temperature history
and is also spatially uniform over the product
throughout the process. The design parameters
contained in @ define a set of functions that
govern the heater output at any given time.
Gradient-based minimization algorithms are then
employed to find the set of design parameters, ®",
that minimize the objective function, so that
F(®") = Min[F(®)]. The design parameters
contained in ®" correspond to the transient heater
settings that produce a temperature distribution
over the design surface that most closely satisfies
the design requirements.

Since the design parameters are modified in
an intelligent way at each iteration based on the
local objective  function curvature, the
optimization design methodology requires fewer
iterations, and the solution quality is much better.
This technique can also accommodate a more
sophisticated system model than most control
algorithms and consequently is less susceptible to
modeling errors.  Finally, unlike the inverse
design methodology, the optimization
methodology can easily accommodate design
constraints. It is convenient to force the heat flux
generated over the heater surface to lie within a
specified operating range throughout the process.

Optimization techniques have been used on a
limited basis to design industrial heating
processes  involving  radiant  enclosures.
Unconstrained linear programming was used to
obtain the optimal heater settings for a simplified
linearized model of an RTP furnace [7], and to
obtain an initial estimate of the heater settings so
that a high-gain controller could be used to
operate an RTP furnace[8]. Nonlinear
programming was used to optimize the heater
settings for a continuous roll-through industrial
furnace operating at steady-state [9].

This paper presents an optimization
technique that accounts for sensible energy
storage in the enclosure walls as well as conjugate
conduction and convection effects. The transient
heater settings are optimized using a quasi-
Newton minimization algorithm that incorporates
an active set method to enforce the design
constraints.

OPTIMIZATION STRATEGY

Figure 1 shows an example radiant enclosure.
The design surface is located on the bottom
surface and is irradiated by heaters on the top,
which in turn are controlled throughout the
process by the design parameters contained in ®.
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Fig. 1: Example of a transient radiant enclosure
design problem: (a) radiant enclosure, and (b)
desired set-point temperature history.

The design surface underside is insulated to
prevent energy provided to the product by the
heaters from leaving the system. As shown later,
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solving this problem requires the discretization of
both the temporal and spatial domains; the time
domain is split into N, time steps, the 7" time step
having a duration A¢, starting from time #,_; and
ending at #, and the design surface is split into
Ny discrete elements, with the i* " element having
an area A4;. Furthermore, it is assumed that the
density, pps, thermal capacity, cps, and thickness,
Jps, are uniform over the design surface.

The first step of this procedure is to define an
objective function in such a way that it is
minimized when (@) the average temperature over
the design surface matches the desired set-point
temperature at any instant, and (b) the
temperature distribution over the design surface is
uniform throughout the process. These design
objectives could be satisfied individually by
minimizing separate objective functions, each
having a different minimum. Instead, these
objective functions are combined to form a third
objective function, whose minimum represents a
trade-off between the two design objectives.

The first design objective is satisfied by
minimizing the difference between the sensible
energy provided to the design surface by the
heaters, and the energy required to heat the design
surface to the set-point temperature. The heater
settings that accomplish this goal at every time
step are found by minimizing

2
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and Qdef’”’( ) is the difference between the

sensible energy added to the design surface
throughout the process and that which must be
added to obtain the set point temperature at the
end of the process,
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These quantities are shown schematically in Fig.
2. Minimizing the first part of F;(®) produces an
average design surface temperature profile that
best matches the slope of the set-point
temperature.  There is likely to be a small

difference between Qt“‘ﬁdj’f( ) and Q% 4
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every time step, which may accumulate over the
process duration. The second term in F(®)
ensures that this error is sufficiently small. The
heuristic parameter » is adjusted by the designer
to achieve an average design surface temperature
that closely matches the desired set-point
temperature throughout the process.

The second design objective is to maintain a
uniform temperature distribution over the design
surface throughout the process. The heater
settings that satisfy this condition are found by
minimizing the variance between the temperature
values calculated at discrete locations over the
design surfaces, averaged over all time steps,
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As prev10usly mentioned, the objective
functions defined in Egs. (1) and (4) pertain to
different design objectives, and both of these
functions are minimized by different sets of @,
ie. (Dl* * q)z*.
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Fig. 2: Relationship between O

Qgif:;”( ), and design surface temperature.

A hybrid objective function is formed by
combining these two objective functions,

F(@)=Cly,F(@)+(1-7)F(@). (5
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where 7 is chosen based on the relative
importance of the two design objectives in a
particular application, and C 1is a scaling
parameter. The set of design parameters ®" that
minimizes Eq. (5) is a compromise between a
solution where the average design surface
temperature  closely follows the set-point
temperature and one having a near-uniform
temperature distribution over the design surface
throughout the process.

Since F(®) is continuously differentiable, ®"
is found iteratively using gradient-based
minimization. At the k" iteration, the design
parameters are updated by first choosing a search
direction, pk, based on the objective function
topography. Next, a step size, o, is chosen, often
by minimizing F(®"+d'p"). Providing that the
constraints are not violated, the design parameters
are then updated by taking a “step” in the p*
direction, @' = @ + a](p]c .

Newton’s method usually requires the fewest
iterations to minimize the objective function; at
each iteration, p* is found by solving

0

V2 F(@* ) pt = —vF(o*).
If the second-order design sensitivities contained
in V2F(®) are expensive to calculate, the quasi-
Newton method is often more suitable. In this
scheme, the search direction is given by

B p* =-vF(0*), @)

where B* approximates V*F(®). Initially, B® is
equal to the identity matrix and p° is the steepest-
descent direction. In subsequent iterations, the
Hessian approximation is updated and improved
using values of F(®) and VF(®) from previous
iterations. The most popular way of doing this is

with  the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update, , ,
BH1 g _ Bfsk sk B . yEpk

KBk ykTpk’ ®)
with s* = @' — ®* and y* = VF(@"*") - VF(@").
Since B* approximates V?F(®) accurately
only after several iterations, the quasi-Newton
method requires more iterations than Newton’s
method to find ®*. Nevertheless, the quasi-
Newton method is usually more computationally
efficient in cases where the second-order
objective sensitivities are expensive to calculate.
In order to find p¥, it is necessary to evaluate
F(®) and V?F(®), which in turn are calculated
using temperatures, T(®,t), and first-order
temperature sensitivities, 0T(®D,¢,)/0D,, at discrete
locations over the design surface throughout the

process. A technique for doing this is presented
in the next section.

CALCULATION OF TEMPERATURE AND
TEMPERATURE SENSITIVITES
An infinitesimal-area analysis [10] is used to
derive the equations governing the temperature
and temperature sensitivities. The first step of the
analysis is to identify a suitable parametric
representation for the enclosure. The enclosure
geometry is specified by
®

r= C(u)z {P(u), Q(u)}T, asu<b,
where the position vector r carves out the
enclosure cross section in the x—y plane as u
varies over its domain.

Once the geometry is parameterized, either
the temperature, 7(u,®,f), or the heat flux,
q(u,®@,t), is specified at every location on the
enclosure surface at any time ¢. In particular, the
transient heat flux distribution over the heater
surfaces is specified as a function of the heater
settings contained in @® and the adiabatic
boundary condition is enforced over the design
surface throughout the process. The thermal
properties &u), x(u), p(u), c(u), and the wall
thickness, &u), are also specified parametrically.

Once the enclosure has been represented
parametrically, the equation relating the radiosity
distribution, g,(u,®,f), to the temperature
distribution, 7(u, @, t), is derived by performing
an energy balance on an infinitely long wall
element having a thickness &wu) and an
infinitesimal chord length J(u)du, as shown in
Fig. 3, where the surface discriminant, J(u), is
given by

)= {{aP(u)T J{@Q(u)T}%, (10

ou ou

In addition to radiation heat transfer, three
other modes of heat transfer enter or leave the
wall element: g ,.«(u,®@,f) is the net rate of heat
transfer entering the wall element by conduction
from the surrounding enclosure wall,

1 0 [ x(u)or(u,®,¢)

> > d)’ = - 5 1 1
eona t) J(u) ou {J(u) Ou (n
Geomu, @, 1) is the rate of convection transferred

from the wall element to the fluid contained
within the enclosure,

(u, @, )= hlu,z) [T(u, ®,1)-T, (t)], (12)

and g,(u, @, 1) is the rate that any other type of
heat transfer enters the wall element by non-
radiative means. All of these terms are per unit

qCU”V
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internal area of the infinitesimal wall element.
(Convection heat transfer with the fluid
surrounding the enclosure has been excluded to
simplify the heat transfer model.)

Setting the mnet rate of conduction,
convection, and thermal radiation heat transfer
entering the infinitesimal wall element equal to
the rate of sensible energy storage, we find

b
oT* (u, @, t)—jaT4 (', ®, 1) k(u,u) du' =
a (13)

b

L R) —j 1 &) blu', @, t) k(u,u') du',
&(u) £(w)

where k(u, u") contains geometric terms derived

from Eq. (9), and b(u, ®,¢) represents the

difference between the net non-radiative heat

transfer into an infinitesimal wall element and the

sensible energy stored within that element,

b(u, @, t)=q, (u, ®,1)+q,,, (u, ®,1)
6T(u, D, t)
or  (14)

= Goom (1, @, 1) = p () e (u) S (u)

Fig. 3:
enclosure, and infinitesimal wall element used to
form governing temperature equation.

Parametric representation of the radiant

The equations governing the temperature
sensitivity are found by differentiating Eqgs. (13)
and (14) with respect to the design parameter of
interest. By applying Liebnitz’s rule to Eq. (13)
and noting that the integral bounds are
independent of u, the temperature sensitivities are
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oD,

40T (u, D, ¢

oD
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a p
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where

ob(u, @,t) _ 0q,(u, D,1) i t)GT(u,CD,t)

oD, oD, oD,
1 0| x(u)d*T(u,@,1) (16)
+ —
J(u) Ou J(u) ouo® ,
0T (u, ®,1)
= plukeloe)s(u) 0w,
Since analytical solutions to integro-

differential equations are usually not tractable, the
temperature  and  temperature  sensitivity
distributions must be solved numerically. The
parametric domain is divided into N elements,
with the i element centered on u; and having a
width Au;. Each of the elements in parametric
space corresponds to an infinitely long wall
element having a finite thickness, as shown in
Fig. 4. The time domain is discretized into N,
time steps starting from £, to #y, = #; in intervals of
At,.

The integrals in Eqs (13) and (15) are
approximated as discrete summations,

b N

Ix(u) k(u,u') du'~ Zx(uj )dﬂ,sm»pj , (A7)

a J=1
where x(u) is the integrated quantity and dF;_,.
is the configuration factor between a point on the
enclosure at #; and the exposed surface of a finite
wall element centered at u;. The spatial
temperature derivatives in Eq. (14) are rewritten
using a second-order central difference
approximation, and the temporal derivatives are
approximated using a first-order backwards
difference operator.

Fig. 4: Discretization of the radiant enclosure
into finite wall elements.

The integro-differential equations governing
the temperature can be rewritten in discrete form,
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A N ~
]-;4 (q)’ Tt)_z ]’4(®’Tt )dFifstripj =
; (18)

l—-¢. | A
|: 8] :| b,' ((D’ TisTiy ) dFi*Sf”'Pj ’

where & = &u;), and the time and temperature
terms are represented non-dimensionally by 7, =

(tt_tO)/(tj_tO)a j:l(q)a T[): T(I/li,q),t)/Ts s
where T is a scaling temperature. Also,

I;i (q)’TI’Tt—l): 4 (chTz)

and

’ei ﬁ+1(®,rt)—2fi(cb,rt)+fi71((I),z't)
+Ccond EY)

J; 2Au;
_Cconv /:l\i(rt)li’\‘(q)’rt )_fw:l (19)

N> J

+Cl!‘ansﬁjéi$i i((I)’Tt)_T'i(q), T[—l)’
Az,

where §.(®, 7) = g,(u, @, t)/T, and h(z) =
h(u;, t,)//’_l . The enclosure properties are
represented by K, = x(u)/x;, p, = puw)ps, ¢, =
c(u)lcs, 5. = &uy)/S, and J, = J(u;)/L., where L.

is a characteristic length. The coefficients C,,,
CCOI’IV’ a'nd CtrﬂﬂS are

Ky

Ccond = ﬁ’ (20)
h 21

Cconv =T 3> ( )

oTy

and
PsCs 0,
Ctrans = 3Y s (22)
ol \t, -t

and their magnitudes indicate the importance of
conduction, convection and sensitive energy
storage relative to radiation.

Writing Eqgs. (18) and (19) for every wall
element results in a matrix equation governing the
temperature of the enclosure surfaces at time 7,

A x, (q)»ft)+ A;x, ((I),z-t): c((I),rt,rt_l )’ (23)
where  x;; (d),r,):ff‘ (d),r,) and x,; (@, z-t)=
7,(®,7,). In order to solve for the transient
temperature distribution, Eq. (23) must be

linearized to form a related matrix equation,

A@.7, ) x(®.7,)=b(@.7,.7,,) Y

xi(q)»fz)zfz“‘(q)’ft) or fi(q)’rt)’
depending on which linearization scheme is used.
The transient temperature distribution is then
solved by first guessing a solution at 7 = 0 and
then writing and solving Eq. (24) at each time
step using the temperature distribution from the
previous time step to form the A matrix and b
vector. Not all linearization schemes will result
in a convergent solution for a given problem [11],
so the method used to linearize Eq. (23) must be
chosen based on the relative magnitudes of the
coefficients defined in Egs. (20)—(22).

Following a similar procedure for Egs. (15)
and (16) results in another matrix equation
governing the temperature sensitivities,

dA((D’ 7,) X ((D’ 7,)= b'(q), Trs T )a

where x/(®,z)= 0T, (D,7)/0D,.
temperature distribution has been solved for, the
sensitivities are found by guessing a sensitivity
distribution at #, and then writing and solving Eq.
(25) at each time step using the sensitivities from
the previous distribution.

where

(25)

Assuming the

IMPLEMENTATION

The design methodology described in the
previous section is demonstrated by using it to
optimize the heater settings of a two-dimensional
annealing furnace (Fig. 5). The top surface has ten
uniformly-spaced heaters, the two side walls are
refractory surfaces, and the design surface is on
the bottom of the enclosure. The heater and
refractory surfaces are assumed to have the
properties of refractory brick, and the design
surface is a slab of AISI 1010 steel. All enclosure
surfaces are assumed to be gray and diffuse, and
their properties are summarized in Table 1.

The objective is to uniformly heat the steel at
a linear ramp rate from 300 K to 500 K over a
five-hour period. It is assumed that the enclosure
surfaces are initially at 300 K, at which point the
heaters are activated and the surfaces are exposed
to a fluid at 7,, = 500 K and h = 5 W/m’K. The
enclosure surfaces are assumed to be thermally
isolated from each other, which is enforced by
insulating the surface edges.

Because of symmetry, the heaters are
controlled in pairs and are numbered as shown in
Fig. 5. In particular, if u; lies on the K" heater,

§,(@,7)=,,(1- 7)3 +@ 4,31 _7)27

3

(26)
+ Dy 3(1—2')72 +4+Dy; 77,
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where {CD4h, CD4h+1, cD4h+2, CD4h+3}T is a subspace of
@; thus, 20 design parameters specify the heat
flux distribution over the heater surface
throughout the process. Controlling the heater
output in this way reduces the dimension of the
minimization problem. Because the Dbasis
functions in Eq. (26) sum to unity for any value of
7, the heater outputs can be constrained to lie
between upper and lower bounds by applying the
same bounds to the corresponding design
parameters. The heat flux is constrained to lie
between 0 < ¢, (@, 7) < 10 by incorporating an

active set method [12] into the BFGS
minimization routine.

Ole[®PO®B[@W

Heater Surface

Refractory

Refractory
/_ Surface

T.=500K  Surface \

h=35WmK

0.5m

/— Design Surface

00
2

<
o 1.0m

Fig. 5: Example design problem. (Heater
numbers are shown in circles.)

Table 1: Enclosure surface properties.

Heater | Refractory | Design
Surface Surface Surface
x[Wim K] 1.0 1.0 63.9
p [kg/m’] 2645 2645 7832
¢ [Jlkg K] 960 960 487
o[m] 0.1 0.1 0.02
& 0.8 0.8 0.4

The problem is non-dimensionalized using L,
=1m, h =5 Wim’K, and T, = 1000 K, while x,
Ps, Cs, and o, are set equal to the design surface
properties.  Substituting these values into Egs.
(20)—(22) results in C,y,g = 1.1270, C,pp, = 0.082,
and Cy,,s = 0.0747.

The magnitudes of the non-dimensional
coefficients indicate that conduction -effects
dominate the model, so Eq. (18) is linearized by
lagging the emissive power terms. This results in
a matrix equation of the form of Eq. (24), where
A contains the conduction, convection, and
sensible energy storage temperature coefficients,

b(®, 7, 7,) is composed of heat fluxes from the
current time step and terms from the conduction
boundary condition, fluid temperature, sensible
energy, and thermal radiation from the previous

time step, and x{(®, 7) = YA", (®, 7). Solving for
the sensitivities results in
A x'((I),r,):b’(CD,T,,rt_l), @7

where b'(®, 7, 7,1) contains the heat flux,
sensible  energy, and thermal radiation
sensitivities with respect to ®,, and x'(®, 7,) =
87:,- (D, 7;)/0®,. Thus, A needs to be formed and

inverted only once at each time step to calculate
both the temperature distribution and sensitivities.

The optimal heater settings are found by
minimizing the objective function in Eq. (5). The
parametric and time domains were discretized
using N = 240 wall elements and N, = 500 time
steps to calculate F(®) and VF(®) throughout the
optimization process. The minimization was
carried out starting from D = 1,i=1...20, and
was stopped when |VFu(®)]|<107%, where
VFrr(®) contains the first-order sensitivities with
respect to the unconstrained design parameters. A
good result was obtained with C = 100, y; = 0.99,
and y, = 0.995.

A local minimum of F(®") = 2.284 x 107
was found after 30 iterations. The optimal heater
settings are shown in Fig. 6, while the resulting
transient temperature response of the design
surface is in Fig. 7. The maximum deviation of
the average temperature from the set-point
temperature was 7.15% at the end of the process.
A better solution might be found by using higher-
order splines to control the heaters, but the
thermal inertia of the design surface severely
limits the response sensitivity of the design
surface. A near uniform temperature distribution
is maintained throughout the process; the
maximum standard deviation from the average
design surface temperature is 0.006%, occurring
atr=1.

Refinement studies verified that a sufficient
number of wall elements and time steps were used
to ensure grid-independence.

CONCLUSIONS

An optimization method is given for finding
optimal heater settings in radiant enclosures used
in manufacturing processing applications. The
method works by defining an objective function
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that is minimized when the design surface
temperature matches the set-point temperature,
and the temperature distribution is uniform over
the design surface throughout the process. Once
this is done, the heater settings are optimized by
minimizing the objective function iteratively
through the BFGS method incorporating an active
set method to enforce design constraints.

Because the design is  improved
systematically at each iteration, this technique
requires far less design time and provides a much
better final solution than the traditional “trial-and-
error” approach, which relies on the designer’s
intuition and experience. This method can also
accommodate a sophisticated heat transfer model
and design constraints that help ensure that the
optimal industrial solution can be implemented.

0.5

0.4

0.31

qs(@,7)/cT*

0.2

0.11

@)

2 3
t [hrs]

Fig. 6: Optional heater settings.

— Set-Point
-~x=0.5
=x=0

t [hrs]

Fig. 7: Optimal design surface temperature.
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