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ABSTRACT 

An optimization methodology is given for 
finding the heater settings that provide spatially-
uniform transient heating in manufacturing 
processes involving radiant heating.  Equations 
governing the transient temperature distribution 
and temperature sensitivity distribution over the 
product are derived using an infinitesimal-area 
technique, and solved numerically to calculate the 
objective function and gradient vector.  
Minimization is done using a quasi-Newton 
algorithm that incorporates an active set method 
to enforce design constraints.  This methodology 
is demonstrated by finding the optimal transient 
heater settings of a two-dimensional annealing 
furnace. 

 
INTRODUCTION 

Radiant enclosures are found in diverse 
industrial settings.  They are often used to 
uniformly heat a product according to a desired 
temperature history.  Examples include annealing 
furnaces used in foundries, baking ovens used in 
food preparation, infrared heating systems that 
cure painted surfaces, and rapid thermal 
processing (RTP) chambers used to manufacture 
semiconductor wafers.  In each case, the  
enclosure consists of a heater surface, several 
intermediate surfaces, and a design surface that 
contains the product to be processed.  To design 
these systems, it is important to have an accurate 
model of the transient heater settings to size the 
heaters and other components of the enclosure.  
Having an accurate a priori estimate of the heater 
settings enables the use of high-gain controllers 
that quickly adjust the heaters to compensate for 
deviations from the desired temperature 
distribution over the design surface. 

In the past, transient heater settings have been 
solved using a forward “trial-and-error” 
technique, in which the designer guesses the 

appropriate heater settings and then repeatedly 
evaluates and heuristically adjusts these settings 
until a satisfactory solution to the design problem 
is identified.  Because of the complicated nature 
of the coupled heat transfer modes, an intuitive 
understanding of the system physics is elusive, so 
such design methodologies usually require many 
iterations, and the final solution is of limited 
quality.To overcome this difficulty, designers 
have adapted model-based control algorithms to 
design the transient heater settings. At any instant, 
the difference between the temperature measured 
at different locations on the design surface and the 
desired set-point temperature defines an error 
signal.  This error signal is passed through a 
feedback loop to the controller, which adjusts the 
heater settings such to reduce the error signal. 
Model-based controllers were applied to design 
the heaters in RTP furnaces [1,2], and a furnace 
used in a continuous annealing process [3]. 
Despite the nonlinear nature of the problem, most 
model-based controllers use linear feedback 
algorithms that cannot accommodate the integrals 
in the radiosity equation that represent reflection 
and reradiation, so these effects are usually 
ignored; this induces large modeling errors into 
the controller, severely limiting theirn accuracy.  
Gwak and Masada [4] accounted for these effects 
by applying non-linear control laws coupled with 
embedded Tikhonov and TSVD regularization.. 

More recently, inverse design methodologies 
have been developed to solve this type of design 
problem.  In this approach, both the desired 
temperature and the radiation heat input required 
to satisfy the sensible energy increase are 
specified over the design surface at different 
process times.  The nonlinear system of equations 
is linearized and the resulting set of ill-
conditioned linear equations is solved using 
regularization methods, starting from the first 
step.  Each solution is used to define the right-
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Optimization techniques have been used on a 
limited basis to design industrial heating 
processes involving radiant enclosures.  
Unconstrained linear programming was used to 
obtain the optimal heater settings for a simplified 
linearized model of an RTP furnace [7], and to 
obtain an initial estimate of the heater settings so 
that a high-gain controller could be used to 
operate an RTP furnace[8].  Nonlinear 
programming was used to optimize the heater 
settings for a continuous roll-through industrial 
furnace operating at steady-state [9]. 

hand-side vector of the next time step.  
Multimiode radiant enclosure problems were 
solved by using TSVD regularization [5], and  
conjugate gradient regularization was used to find 
the transient heater settings that heated a design 
surface in a roll-through batch furnace according 
to a prescribed temperature history [6].   

Unlike most model-based control algorithms, 
the inverse design approach can accommodate a 
sophisticated heat transfer model resulting in  
small modeling error.  Nevertheless, a significant 
drawback of this method is that it is difficult to 
accommodate design constraints in the inverse 
design methodology, and because of this, 
solutions from regularization often include 
regions of negative heat flux over the heater 
surface. This condition cannot be realized in 
practical furnaces, so these regions are usually 
taken to be adiabatic, further impairing the 
solution quality. 

This paper presents an optimization 
technique that accounts for sensible energy 
storage in the enclosure walls as well as conjugate 
conduction and convection effects.  The transient 
heater settings are optimized using a quasi-
Newton minimization algorithm that incorporates 
an active set method to enforce the design 
constraints.   
 Optimization through nonlinear programming 

overcomes many of these drawbacks.  Here, an 
objective function, F(Φ), is defined in such a way 
that its minimum corresponds to the desired 
design outcome, which in this case is a 
temperature distribution over the design surface 
that both matches the desired temperature history 
and is also spatially uniform over the product 
throughout the process.  The design parameters 
contained in Φ define a set of functions that 
govern the heater output at any given time.  
Gradient-based minimization algorithms are then 
employed to find the set of design parameters, Φ∗, 
that minimize the objective function, so that 
F(Φ∗) = Min[F(Φ)].  The design parameters 
contained in Φ∗ correspond to the transient heater 
settings that produce a temperature distribution 
over the design surface that most closely satisfies 
the design requirements. 

OPTIMIZATION STRATEGY 
Figure 1 shows an example radiant enclosure.  

The design surface is located on the bottom 
surface and is irradiated by heaters on the top, 
which in turn are controlled throughout the 
process by the design parameters contained in Φ.   

 

Since the design parameters are modified in 
an intelligent way at each iteration based on the 
local objective function curvature, the 
optimization design methodology requires fewer 
iterations, and the solution quality is much better.  
This technique can also accommodate a more 
sophisticated system model than most control 
algorithms and consequently is less susceptible to 
modeling errors.  Finally, unlike the inverse 
design methodology, the optimization 
methodology can easily accommodate design 
constraints. It is convenient to force the heat flux 
generated over the heater surface to lie within a 
specified operating range throughout the process. 
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Fig. 1: Example of a transient radiant enclosure 
design problem: (a) radiant enclosure, and (b) 

desired set-point temperature history. 

(b) t 

 
The design surface underside is insulated to 

prevent energy provided to the product by the 
heaters from leaving the system. As shown later, 
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solving this problem requires the discretization of 
both the temporal and spatial domains; the time 
domain is split into Nt time steps, the tth time step 
having a duration ∆tt starting from time tt−1 and 
ending at tt

 

( )Φ

(3) 
 

, and the design surface is split into 
NDS discrete elements, with the ith element having 
an area ∆Ai.  Furthermore, it is assumed that the 
density, ρDS, thermal capacity, cDS, and thickness, 
δDS, are uniform over the design surface. 

 Q
 

 

The first step of this procedure is to define an 
objective function in such a way that it is 
minimized when (a) the average temperature over 
the design surface matches the desired set-point 
temperature at any instant, and (b) the 
temperature distribution over the design surface is 
uniform throughout the process.  These design 
objectives could be satisfied individually by 
minimizing separate objective functions, each 
having a different minimum.  Instead, these 
objective functions are combined to form a third 
objective function, whose minimum represents a 
trade-off between the two design objectives. 

The first design objective is satisfied by 
minimizing the difference between the sensible 
energy provided to the design surface by the 
heaters, and the energy required to heat the design 
surface to the set-point temperature.  The heater 
settings that accomplish this goal at every time 
step are found by minimizing 
 

(1) 
 
 
where  is the difference 
between the sensible energy increase in the design 
surface provided by the heaters during the tth time 
step and  the sensible energy that must be added 
to achieve the desired temperature increase over 
the tth time step,  
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These quantities are shown schematically in Fig. 
2.  Minimizing the first part of F1(Φ) produces an 
average design surface temperature profile that 
best matches the slope of the set-point 
temperature.  There is likely to be a small 
difference between ( )∗

→− Φadded
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Q  and Q  at 
every time step, which may accumulate over the 
process duration. The second term in F

t→

1(Φ) 
ensures that this error is sufficiently small.  The 
heuristic parameter γ2 is adjusted by the designer 
to achieve an average design surface temperature 
that closely matches the desired set-point 
temperature throughout the process. 

The second design objective is to maintain a 
uniform temperature distribution over the design 
surface throughout the process.  The heater 
settings that satisfy this condition are found by 
minimizing the variance between the temperature 
values calculated at discrete locations over the 
design surfaces, averaged over all time steps, 
 

 
As previously mentioned, the objective 
ions defined in Eqs. (1) and (4) pertain to 

different design objectives, and both of these 
functions are minimized by different sets of Φ, 
i.e. Φ1

* ≠ Φ2
*.  

( ) ( )[ ]
( ) ( )[ ] ,1

2
02

1

2
1121


−+


 −=

−

=
→−→−∑

Φ

ΦΦ

deficit
tf

N

t

target
tt

added
tt

Q

QQF
t

γ

γ

( )

( ) ( )[ ] .,
1

0

∑
=

→

∆−

×=

DSN

i
if

target
fi

DSDSDS
deficit

tf

AtTtT

c

Φ

Φ δρ

( ) ( ) ( )[ ] .,,1

1 1

2
2 ∑ ∑

= =

−=
t DSN

t

N

i
tti

DSt
tTtT

NN
F ΦΦΦ

  

 
 
 
 

(2)  
 
 
 
and  is the difference between the 

sensible energy added to the design surface 
throughout the process and that which must be 
added to obtain the set point temperature at the 
end of the process, 
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Fig. 2: Relationship between Q , Q ,  ( )Φadded
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A hybrid objective function is formed by 
combining these two objective functions, 
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where γ1 is chosen based on the relative 
importance of the two design objectives in a 
particular application, and C is a scaling 
parameter.  The set of design parameters Φ∗ that 
minimizes Eq. (5) is a compromise between a 
solution where the average design surface 
temperature closely follows the set-point 
temperature and one having a near-uniform 
temperature distribution over the design surface 
throughout the process. 

Since F(Φ) is continuously differentiable, Φ* 
is found iteratively using gradient-based 
minimization.  At the kth iteration, the design 
parameters are updated by first choosing a search 
direction, pk, based on the objective function 
topography.  Next, a step size, αk, is chosen, often 
by minimizing F(Φk+αkpk).  Providing that the 
constraints are not violated, the design parameters 
are then updated by taking a “step” in the pk 
direction, Φk+1 = Φk + αkpk. 

parameters are updated by first choosing a search 
direction, pk, based on the objective function 
topography.  Next, a step size, αk, is chosen, often 
by minimizing F(Φk+αkpk).  Providing that the 
constraints are not violated, the design parameters 
are then updated by taking a “step” in the pk 
direction, Φk+1 = Φk + αkpk. 

Newton’s method usually requires the fewest 
iterations to minimize the objective function; at 
each iteration, pk is found by solving 

Newton’s method usually requires the fewest 
iterations to minimize the objective function; at 
each iteration, pk is found by solving 

(6)  (6)  
  
If the second-order design sensitivities contained 
in ∇2F(Φ) are expensive to calculate, the quasi-
Newton method is often more suitable.  In this 
scheme, the search direction is given by  

If the second-order design sensitivities contained 
in ∇2F(Φ) are expensive to calculate, the quasi-
Newton method is often more suitable.  In this 
scheme, the search direction is given by  

(7) (7) 
  
where Bk approximates ∇2F(Φ).   Initially, B0 is 
equal to the identity matrix and p0 is the steepest-
descent direction.  In subsequent iterations, the 
Hessian approximation is updated and improved 
using values of F(Φ) and ∇F(Φ) from previous 
iterations.  The most popular way of doing this is 
with the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) update,  

where Bk approximates ∇2F(Φ).   Initially, B0 is 
equal to the identity matrix and p0 is the steepest-
descent direction.  In subsequent iterations, the 
Hessian approximation is updated and improved 
using values of F(Φ) and ∇F(Φ) from previous 
iterations.  The most popular way of doing this is 
with the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) update,  
  

(8) (8) 
  
with sk = Φk+1 – Φk and yk = ∇F(Φk+1) − ∇F(Φk+1).   with sk = Φk+1 – Φk and yk = ∇F(Φk+1) − ∇F(Φk+1).   

Since Bk approximates ∇2F(Φ) accurately 
only after several iterations, the quasi-Newton 
method requires more iterations than Newton’s 
method to find Φ∗.  Nevertheless, the quasi-
Newton method is usually more computationally 
efficient in cases where the second-order 
objective sensitivities are expensive to calculate. 

Since Bk approximates ∇2F(Φ) accurately 
only after several iterations, the quasi-Newton 
method requires more iterations than Newton’s 
method to find Φ∗.  Nevertheless, the quasi-
Newton method is usually more computationally 
efficient in cases where the second-order 
objective sensitivities are expensive to calculate. 

In order to find pk, it is necessary to evaluate 
F(Φ) and ∇2F(Φ), which in turn are calculated 
using temperatures, Ti(Φ,tt), and first-order 
temperature sensitivities, ∂Ti(Φ,tt

(11

(1

)/∂Φp, at discrete 
locations over the design surface throughout the 

process.  A technique for doing this is presented 
in the next section. 

In order to find pk, it is necessary to evaluate 
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process.  A technique for doing this is presented 
in the next section. 
  
CALCULATION OF TEMPERATURE AND 
TEMPERATURE SENSITIVITES 
CALCULATION OF TEMPERATURE AND 
TEMPERATURE SENSITIVITES 

An infinitesimal-area analysis [10] is used to 
derive the equations governing the temperature 
and temperature sensitivities.  The first step of the 
analysis is to identify a suitable parametric 
representation for the enclosure.  The enclosure 
geometry is specified by 

An infinitesimal-area analysis [10] is used to 
derive the equations governing the temperature 
and temperature sensitivities.  The first step of the 
analysis is to identify a suitable parametric 
representation for the enclosure.  The enclosure 
geometry is specified by 

(9) (9) 
  
where the position vector r carves out the 
enclosure cross section in the x−y plane as u 
varies over its domain.   

where the position vector r carves out the 
enclosure cross section in the x−y plane as u 
varies over its domain.   

Once the geometry is parameterized, either 
the temperature, T(u,Φ,t), or the heat flux, 
qs(u,Φ,t), is specified at every location on the 
enclosure surface at any time t.  In particular, the 
transient heat flux distribution over the heater 
surfaces is specified as a function of the heater 
settings contained in Φ and the adiabatic 
boundary condition is enforced over the design 
surface throughout the process.  The thermal 
properties ε(u), κ(u), ρ(u), c(u), and the wall 
thickness, δ(u), are also specified parametrically. 

Once the geometry is parameterized, either 
the temperature, T(u,Φ,t), or the heat flux, 
qs(u,Φ,t), is specified at every location on the 
enclosure surface at any time t.  In particular, the 
transient heat flux distribution over the heater 
surfaces is specified as a function of the heater 
settings contained in Φ and the adiabatic 
boundary condition is enforced over the design 
surface throughout the process.  The thermal 
properties ε(u), κ(u), ρ(u), c(u), and the wall 
thickness, δ(u), are also specified parametrically. 

Once the enclosure has been represented 
parametrically, the equation relating the radiosity 
distribution, qo(u,Φ,t), to the temperature 
distribution, T(u, Φ, t), is derived by performing 
an energy balance on an infinitely long wall 
element having a thickness δ(u) and an 
infinitesimal chord length J(u)du, as shown in 
Fig. 3, where the surface discriminant, J(u), is 
given by 
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infinitesimal chord length J(u)du, as shown in 
Fig. 3, where the surface discriminant, J(u), is 
given by 

  
(10) (10) 

  
  

In addition to radiation heat transfer, three 
other modes of heat transfer enter or leave the 
wall element: qcond(u,Φ,t) is the net rate of heat 
transfer entering the wall element by conduction 
from the surrounding enclosure wall, 
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wall element: qcond(u,Φ,t) is the net rate of heat 
transfer entering the wall element by conduction 
from the surrounding enclosure wall, 
  

) (11) 
  
qconv(u, Φ, t) is the rate of convection transferred 
from the wall element to the fluid contained 
within the enclosure, 

qconv(u, Φ, t) is the rate of convection transferred 
from the wall element to the fluid contained 
within the enclosure, 
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and qs(u, Φ, t) is the rate that any other type of 
heat transfer enters the wall element by non-
radiative means. All of these terms are per unit 

and qs(u, Φ, t) is the rate that any other type of 
heat transfer enters the wall element by non-
radiative means. All of these terms are per unit 
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where internal area of the infinitesimal wall element.  
(Convection heat transfer with the fluid 
surrounding the enclosure has been excluded to 
simplify the heat transfer model.) 

 

Setting the net rate of conduction, 
convection, and thermal radiation heat transfer 
entering the infinitesimal wall element equal to 
the rate of sensible energy storage, we find 
 

 
(13) 

 
 

 
where k(u, u′) contains geometric terms derived 
from Eq. (9), and b(u, Φ, t) represents the 
difference between the net non-radiative heat 
transfer into an infinitesimal wall element and the 
sensible energy stored within that element, 

 
 
 

(14) 
.

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Parametric representation of the radiant 
enclosure, and infinitesimal wall element used to 
form governing temperature equation. 

 
The equations governing the temperature 

sensitivity are found by differentiating Eqs. (13) 
and (14) with respect to the design parameter of 
interest.  By applying Liebnitz’s rule to Eq. (13) 
and noting that the integral bounds are 
independent of u, the temperature sensitivities are  
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Since analytical solutions to integro-

differential equations are usually not tractable, the 
temperature and temperature sensitivity 
distributions must be solved numerically.  The 
parametric domain is divided into N elements, 
with the ith element centered on ui and having a 
width ∆ui.  Each of the elements in parametric 
space corresponds to an infinitely long wall 
element having a finite thickness, as shown in 
Fig. 4.  The time domain is discretized into Nt 
time steps starting from t0 to tNt = tf  in intervals of 
∆tt. 

The integrals in Eqs (13) and (15) are 
approximated as discrete summations, 
 

(17) 
 
where x(u) is the integrated quantity and dFi−stripj 
is the configuration factor between a point on the 
enclosure at ui and the exposed surface of a finite 
wall element centered at uj.  The spatial 
temperature derivatives in Eq. (14) are rewritten 
using a second-order central difference 
approximation, and the temporal derivatives are 
approximated using a first-order backwards 
difference operator.   
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Fig. 4: Discretization of the radiant enclosure 
into finite wall elements. 

 
The integro-differential equations governing 

the temperature can be rewritten in discrete form, 
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where ( ) ( )titi Tx ττ ,ˆ, 4 ΦΦ =  or T , 
depending on which linearization scheme is used.   
The transient temperature distribution is then 
solved by first guessing a solution at τ = 0 and 
then writing and solving Eq. (24) at each time 
step using the temperature distribution from the 
previous time step to form the A matrix and b 
vector.  Not all linearization schemes will result 
in a convergent solution for a given problem [11], 
so the method used to linearize Eq. (23) must be 
chosen based on the relative magnitudes of the 
coefficients defined in Eqs. (20)−(22).   
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î

 

 
(18) 

 
 
 

 

( ) ( )

( ) ( ) ,,,ˆ1,,ˆ

,ˆ,ˆ

1
1

1

1

44

∑

∑

≠
=

−−
−

≠
=

−











 −
−

=−

N

ij
j

stripjitti
j

j

i

tti

N

ij
j

stripjitjti

dFb
b

dFTT

ττ
ε

ε
ε

ττ

ττ

Φ
Φ

ΦΦ

where εi = ε(ui), and the time and temperature 
terms are represented non-dimensionally by τt = 
(tt−t0)/(tf−t0), and ( ) ( ) siti TtuT ,,,ˆ ΦΦ =τT , 
where Ts is a scaling temperature.  Also, 
 
 

Following a similar procedure for Eqs. (15) 
and (16) results in another matrix equation 
governing the temperature sensitivities,  
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 and their magnitudes indicate the importance of 
conduction, convection and sensitive energy 
storage relative to radiation. 

Writing Eqs. (18) and (19) for every wall 
element results in a matrix equation governing the 
temperature of the enclosure surfaces at time τt,  

 

where   and ( ) (iti Tx ττ ,ˆ, 4
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.  In order to solve for the transient 
temperature distribution, Eq. (23) must be 
linearized to form a related matrix equation,  
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where xi′(Φ,τt)= ∂T (Φ,τt)/∂Φp.  Assuming the 
temperature distribution has been solved for, the 
sensitivities are found by guessing a sensitivity 
distribution at t0 and then writing and solving Eq. 
(25) at each time step using the sensitivities from 
the previous distribution.   
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IMPLEMENTATION 

The design methodology described in the 
previous section is demonstrated by using it to 
optimize the heater settings of a two-dimensional 
annealing furnace (Fig. 5). The top surface has ten 
uniformly-spaced heaters, the two side walls are 
refractory surfaces, and the design surface is on 
the bottom of the enclosure.  The heater and 
refractory surfaces are assumed to have the 
properties of refractory brick, and the design 
surface is a slab of AISI 1010 steel.  All enclosure 
surfaces are assumed to be gray and diffuse, and 
their properties are summarized in Table 1.  

,23
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The objective is to uniformly heat the steel at 
a linear ramp rate from 300 K to 500 K over a 
five-hour period.  It is assumed that the enclosure 
surfaces are initially at 300 K, at which point the 
heaters are activated and the surfaces are exposed 
to a fluid at T∞ = 500 K and h = 5 W/m2K.  The 
enclosure surfaces are assumed to be thermally 
isolated from each other, which is enforced by 
insulating the surface edges. 

Because of symmetry, the heaters are 
controlled in pairs and are numbered as shown in 
Fig. 5.  In particular, if ui lies on the hth heater, 
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where {Φ4h, Φ4h+1, Φ4h+2, Φ4h+3}T is a subspace of 
Φ; thus, 20 design parameters specify the heat 
flux distribution over the heater surface 
throughout the process.  Controlling the heater 
output in this way reduces the dimension of the 
minimization problem. Because the basis 
functions in Eq. (26) sum to unity for any value of 
τ, the heater outputs can be constrained to lie 
between upper and lower bounds by applying the 
same bounds to the corresponding design 
parameters.  The heat flux is constrained to lie 
between 0 ≤ (Φ, τ) ≤ 10 by incorporating an 
active set method [12] into the BFGS 
minimization routine. 
active set method [12] into the BFGS 
minimization routine. 

hsq̂

  
  
  

  
  
 0.5 m 

  
  
  
  

  
Fig. 5: Example design problem.  (Heater 

numbers are shown in circles.) 
Fig. 5: Example design problem.  (Heater 

numbers are shown in circles.) 
  

Table 1: Enclosure surface properties.  Table 1: Enclosure surface properties.  
  

  Heater 
Surface 
Heater 
Surface 

Refractory 
Surface 

Refractory 
Surface 

Design 
Surface 
Design 
Surface 

κ [W/m K] 1.0 1.0 63.9 
ρ [kg/m3] 2645 2645 7832 
c [J/kg K] 960 960 487 

δ [m] 0.1 0.1 0.02 
ε 0.8 0.8 0.4 

 

 
The problem is non-dimensionalized using Lc 

= 1m,  = 5 W/m2K, and Ts = 1000 K, while κs, 
ρs, cs, and δs, are set equal to the design surface 
properties.  Substituting these values into Eqs. 
(20)−(22) results in Ccond = 1.1270, Cconv = 0.082, 
and Ctrans = 0.0747.   

h

î

The magnitudes of the non-dimensional 
coefficients indicate that conduction effects 
dominate the model, so Eq. (18) is linearized by 
lagging the emissive power terms.  This results in 
a matrix equation of the form of Eq. (24), where 
A contains the conduction, convection, and 
sensible energy storage temperature coefficients, 

b(Φ, τt, τt−1) is composed of heat fluxes from the 
current time step and terms from the conduction 
boundary condition, fluid temperature, sensible 
energy, and thermal radiation from the previous 
time step, and xi(Φ, τt) = T (Φ, τt).  Solving for 
the sensitivities results in 

(27) ( ) ( ),,,',' 1−Φ= ttt τττ bx ΦA
 

where b′(Φ, τt, τt−1) contains the heat flux, 
sensible energy, and thermal radiation 
sensitivities with respect to Φp, and x′i(Φ, τt) = 

(Φ, τiT̂∂ t)/∂Φp.  Thus, A needs to be formed and 
inverted only once at each time step to calculate 
both the temperature distribution and sensitivities. 

The optimal heater settings are found by 
minimizing the objective function in Eq. (5).  The 
parametric and time domains were discretized 
using N = 240 wall elements and Nt = 500 time 
steps to calculate F(Φ) and ∇F(Φ) throughout the 
optimization process.  The minimization was 
carried out starting from Φi

0 = 1, i = 1…20, and 
was stopped when ||∇FFR(Φ)|| ≤ 10−6, where 
∇FFR(Φ) contains the first-order sensitivities with 
respect to the unconstrained design parameters.  A 
good result was obtained with C = 100, γ1 = 0.99, 
and γ2 = 0.995.   

1.0 m 

45 

T∞ = 500 K 
h = 5 W/m2K 

Refractory 
Surface

Refractory 
Surface 

Design Surface 

Heater Surface 

011223 34 45 12 23 34 1 

A local minimum of F(Φ∗)  = 2.284 × 10−3 
was found after 30 iterations.  The optimal heater 
settings are shown in Fig. 6, while the resulting 
transient temperature response of the design 
surface is in Fig. 7.  The maximum deviation of 
the average temperature from the set-point 
temperature was 7.15% at the end of the process.  
A better solution might be found by using higher-
order splines to control the heaters, but the 
thermal inertia of the design surface severely 
limits the response sensitivity of the design 
surface.  A near uniform temperature distribution 
is maintained throughout the process; the 
maximum standard deviation from the average 
design surface temperature is 0.006%, occurring 
at τ = 1. 

Refinement studies verified that a sufficient 
number of wall elements and time steps were used 
to ensure grid-independence. 
 
CONCLUSIONS 

An optimization method is given for finding 
optimal heater settings in radiant enclosures used 
in manufacturing processing applications.   The 
method works by defining an objective function 
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that is minimized when the design surface 
temperature matches the set-point temperature, 
and the temperature distribution is uniform over 
the design surface throughout the process.  Once 
this is done, the heater settings are optimized by 
minimizing the objective function iteratively 
through the BFGS method incorporating an active 
set method to enforce design constraints. 
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